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Abstract. Escape to infinity in the presence of a Newtonian potential is examined in the classical
and relativistic cases.

1. Introduction

In recent papers [1, 2] the blow-up of R
n vector fields (VF) has been studied by means of local

series around movable singularities (the Painlevé analysis) [3, 4]. In this paper we study a
related problem: the escape to infinity (in the configuration space of the coordinates x, y, z)
of a particle ruled by Newtonian equations of the following type:

ẍ = −∇V (x)

x = (x, y, z).
(1)

In this paper V (x) denotes a finite or infinite superposition of terms of the type ‖x−xi‖−1,
and these kinds of potentials shall be called Newtonian potentials. We shall also assume that
all masses mi at xi are stationary in their reference frame.

The time taken by the particle in reaching ‖x‖ = +∞ can be finite or infinite. However,
we are not interested in the boundedness or otherwise of this time.

Our problem is this: assume that (x0, ẋ0) are the initial conditions of equations (1) and
that x(t, x0, ẋ0) is the corresponding solution. Assume that x0 is fixed but that ẋ0 can be
changed. Is it possible to reach ‖x‖ = +∞ by choosing ẋ0 appropriately?

Note that when V (x) is a central potential our question is rather trivial as equations (1) are
integrable [5]. However, when several Newtonian attracting masses are present equations (1)
are, in general, non-integrable and the escape to infinity must be analysed in other ways.

Escape to infinity under the presence of a finite number of particles or material bodies is
considered in section 2, while section 3 deals with escape in the presence of an infinite number
of particles. In section 4 we consider relativistic escape, governed by equations of motion of
the form

m0
d

dt
(γ ẋ) = −∇V (x)

γ = (1 − ẋ2)−1/2

m0 = proper mass.

(2)

Finally, in section 5, we end with some open problems.
Escape in the presence of a Newtonian potential has been considered in [6, 7] when the

potential is non-Newtonian. A careful mathematical study of Newtonian potentials can be
found in [8].
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2. Escape to infinity in the presence of a finite number of masses

Case 2.1

We consider first the case of a finite number N of attracting masses mi (i = 1, . . . , N) situated
at the points xi .

The force exerted by them on a mass M = 1 at x = (x, y, z) is

F (x, y, z) = −
N∑

i=1

G
mi(x − xi )

‖x − xi‖3
(3)

where G denotes the gravitational constant. We assume that xi �= 0, i = 1, . . . , N .
The differential equations of motion of the mass M = 1 are

ẍ = F (x, y, z) (4)

and since

ρ · ρ = x · x

ρ = ‖x‖
(5)

we obtain, by time derivation in (5),

ρ̈ = ẋ2 − ρ̇2 + x · F

ρ
� x · F

ρ
= Fρ(ρ, θ, ϕ). (6)

Computing the term (x · F ) · ρ−1 for the F given in equation (3) we obtain

x · F

ρ
= −G

N∑
i=1

mi(x − xi ) · x

‖x − xi‖3 · ρ
� −G

N∑
i=1

mi(ρ
2 + ρρi)

(ρ − ρi)3 · ρ

ρ > max(ρ1, . . . , ρN).

(7)

Note that the denominators of (7) never vanish outside the sphere ρ = max(ρ1, . . . , ρN).
Therefore, equation (6) implies

ρ̈ � −dW

dρ

W = G

∫ N∑
i=1

mi(ρ + ρi)

(ρ − ρi)3
dρ.

(8)

The reader can easily check that the differential equation

ẍ = −dW

dx

W(x) = G

N∑
i=1

∫
mi(x + ρi)

(x − ρi)3

x > max(ρ1, . . . , ρN)

(9)

possesses unbounded solutions ∀x0 > ρi when ẋ0 is large enough. One has just to draw W(x)

versus x and note that W(x) is bounded when x → +∞.
The existence of unbounded solutions to equation (9) implies, via (8), that there are

unbounded solutions of equation (4) when ρ0 > max(ρ1, . . . , ρN) and ρ̇0 is sufficiently high.
Therefore, the force field (3) admits escape solutions.
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Case 2.2

Let us now assume that the unit mass M is subjected to the attraction of a continuous, but finite,
mass which is distributed over a compact region C ⊂ R

3. Note that M can also escape to
infinity under appropriate initial conditions. The same result is obtained when M is attracted
by a finite number of masses distributed over the compact regions C1, . . . , CN . The details of
the proof will not be given as they are elementary.

The gravitational potential V (x, y, z) at x /∈ C is given by

V = −G

∫ ∫ ∫
C

d(x′)
‖x − x′‖ dV ′ x′ ∈ C (10)

where d(x′) denotes the density of the distribution of matter inside C. We assume continuity
of d(x′). The integral in (10) is convergent for any x /∈ C, as C is a compact set.

On the other hand, equation (4) can be written as

ẍ = −∇V (11)

where V is given in (10). Note that ∇V is well defined since ‖x − x′‖−1 is a class-one
function in x and the region C is compact. We obtain in this way the convergent expression
for F (x, y, z),

F (x) = −G

∫ ∫ ∫
C

(x − x′) d(x ′)
‖x − x′‖3

dV ′ x /∈ C. (12)

Let us now obtain a bound for the term (F · x) · ρ−1 of equation (6):

(F · x) · ρ−1 = −G

∫ ∫ ∫
C

(x − x′) · x · d(x′)
ρ‖x − x′‖3

dV ′

� −G

∫ ∫ ∫
C

(ρ2 + ρρ ′) d(x′)
ρ(ρ − ρ ′)3

dV ′ = −dW(ρ)

dρ
(13)

where W(ρ) is defined by

W(ρ) = −G

∫ (∫ ∫ ∫
C

(ρ + ρ ′) d(x′)
(ρ − ρ ′)3

dV ′
)

dρ. (14)

Note that all the integrals in (13) and (14) are well defined for ρ > ρ ′(C).
We can therefore write†

ρ̈ � x · F

ρ
� −dW(ρ)

dρ
. (15)

Proceeding now as in Case 2.1, escape to infinity is ensured if we can show that W(ρ) is
bounded when ρ → +∞. This is easy to prove since the function (ρ + ρ ′)/(ρ − ρ ′)3 behaves
like ρ−2 for ρ → +∞ and the integration domain C in (14) is compact. Therefore, the
boundedness of W(ρ) is ensured, and so is escape to infinity under the action of the force field
(12).

† For the mathematical justification concerning the commutation of integrals, series and the derivative operator, see
[9].
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3. Escape in the presence of an infinite system of discrete masses

In this section we study the possibility of escape to infinity under the attraction of the mass
distribution

(mi, xi )
∑

i

mi = finite. (16)

First of all, additional assumptions are made in order to make V and F well defined functions
for every x �= xi .

These assumptions are

‖xi‖ → +∞ (17)

and
∞∑
1

mi‖xi‖−1 = finite

∞∑
1

mi‖xi‖−2 = finite.

(18)

It is easy to see that (17) and (18) imply that the series defining V and F , that is

V (x) = −G

∞∑
i=1

mi

‖x − xi‖

F (x) = −G

∞∑
i=1

mi(x − xi )

‖x − xi‖3

(19)

are convergent (in fact, absolutely convergent), since (by (17)) its terms, when i → +∞,
behave thus:

1

‖x − xi‖ ∼ 1

‖xi‖
‖x − xi‖
‖x − xi‖3

� 1

‖x − xi‖2
∼ 1

‖xi‖2

‖y − yi‖
‖x − xi‖3

� 1

‖x − xi‖2
∼ 1

‖xi‖2

‖z − zi‖
‖x − xi‖3

� 1

‖x − xi‖2
∼ 1

‖xi‖2

(20)

and, by (18), this implies their convergence [9].
Note that V and F are well defined by (19) even if

∑
mi = +∞.

Observe that equation (17) implies

‖x − xi‖ > a(x) > 0 ∀i. (21)

Equation (21) shows that the mass distribution (mi, xi ) cannot accumulate around any x �= xi .
Note also that V and F , as defined in (19), do satisfy the usual relation F = −∇V

due to the uniform convergence in x of the series for F (x), which follows immediately from
equation (20).

Let us now give two examples of mass distributions satisfying equations (16)–(18) for
which escape to infinity is possible.
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Case 3.1

Let xi = (xi, yi, zi) and zi < 0, ∀i. We show that the unit mass can escape to infinity in the
region z > 0.

In fact, we can write for the z-coordinate of the unit mass [9]

z̈ = −G

∞∑
i=1

mi(z − zi)

[(x − xi)2 + (y − yi)2 + (z − zi)2]3/2
� −G

∞∑
i=1

mi

(z − zi)2

� −G

∞∑
i=1

mi

z2
= −dW(z)

dz

W(z) = −G
∑

mi

z

(22)

where we have taken into account that (z − zi) > 0 in the region of space z > 0.
Now the function V (z) = −(G

∑
mi)/z is bounded when z → +∞. Therefore, escape

to infinity is ensured.
Note that our hypothesis zi < 0, ∀i includes the cases of mass distribution on a straight

line or inside a cylinder. It does not include the case of masses outside a cylinder.

Case 3.2

We now assume that the mass distribution (mi, xi ) is symmetrical with respect to the z-axis.
That is, for every xi = (xi, yi, zi) there exists a x∗

i = (−xi, −yi, zi) with m∗
i = mi . We also

assume

r2
i = x2

i + y2
i � R2

0 ∀i R0 > 0. (23)

That is, the masses mi do not accumulate around the z-axis. Under these conditions we prove
that escape to infinity along the z-axis is possible.

Note that the z-axis is an invariant line since

F |z-axis‖(z-axis). (24)

Therefore, if the initial conditions of the unit mass are

x0 = (0, 0, z0)

ẋ0 = (0, 0, ż0)
(25)

this mass will never leave the z-axis.
The differential equation for z is

z̈ = −2G

∞∑
i=1

mi(z − zi)

(r2
i + (z − zi)2)3/2

r2
i = (x2

i + y2
i ). (26)

The factor of two in equation (26) appears since we have lumped together the attraction of the
symmetrical masses mi and m∗

i .
Now equation (26) can also be written in the form [9]

z̈ = − d

dz
V (z)

V (z) = −
∞∑
i=1

2Gmi

[r2
i + (z − zi)2]1/2

.

(27)
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The potential V (z) is bounded when z → +∞. So by equation (23) we can write

∞∑
i=1

mi

[r2
i + (z − zi)2]1/2

�
∞∑
i=1

mi

ri

�
∑

mi

R0
. (28)

Therefore, the unit mass M can escape to infinity.

4. Relativistic escape

We now prove that escape to infinity occurs for all the cases studied in sections 2 and 3.
The differential equations of the relativistic motion of a unit mass under the force field

F (x) are

ẍ = (1 − ẋ2)1/2 M F (x) (29)

with M being the matrix

M =




1 − ẋ2 −ẋẏ −ẋż

−ẋẏ 1 − ẏ2 −ẏż

−ẋż −ẏż 1 − ż2


. (30)

Proceeding as in the previous sections we obtain

ρ̈ � (1 − ẋ2)1/2 x M · F

ρ
. (31)

We now examine the examples from section 2.
From equations (3) and (31) we obtain

ρ̈ � −(1 − ẋ2)1/2 G

ρ

∞∑
i=1

x · M(x − xi )

‖x − xi‖3

� −(1 − ẋ2)1/2 G

ρ

∞∑
i=1

ρ2 + ρρi

(ρ − ρi)3
� −G

∞∑
i=1

ρ + ρi

(ρ − ρi)3
. (32)

At this point the reasoning to prove that escape to infinity is possible is the same as in section 2.
From equations (12) and (31) we obtain

ρ̈ � −(1 − ẋ2)1/2 G

ρ

∫ ∫ ∫
C

x · M(x − x′) d(x′)
‖x − x′‖3

dV ′

� −(1 − ẋ2)1/2 G

ρ

∫ ∫ ∫
C

(ρ2 + ρρ ′) d(x′)
‖x − x′‖3

dV ′

� −G

∫ ∫ ∫
C

(ρ + ρ ′) d(x′)
(ρ − ρ ′)3

dV ′. (33)

At this point escape to infinity is proved as in section 2.
Let us now examine the examples from section 3. In the case of equation (22) the relativistic

equation is

z̈ = −(1 − ẋ2)1/2G

∞∑
i=1

mi

−(x − xi)ẋż − (y − yi)ẏż + (z − zi)(1 − ż2)

[(x − xi)2 + (y − yi)2 + (z − zi)2]3/2
. (34)
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Now we can write
(x − xi)ẋż

[(x − xi)2 + (y − yi)2 + (z − zi)2]3/2
� −1

(x − xi)2 + (y − yi)2 + (z − zi)2
� −1

(z − zi)2

(y − yi)ẏż

[(x − xi)2 + (y − yi)2 + (z − zi)2]3/2
� −1

(x − xi)2 + (y − yi)2 + (z − zi)2
� −1

(z − zi)2

−(z − zi)(1 − ż2)

[(x − xi)2 + (y − yi)2 + (z − zi)2]3/2
� −1

(x − xi)2 + (y − yi)2 + (z − zi)2
� −1

(z − zi)2

(35)

and therefore, by equations (34) and (35), the following inequality can be written (remember
that zi < 0 ∀i):

z̈ � −G(1 − ẋ2)1/2
∞∑
i=1

3mi

(z − zi)2
� −3G

∞∑
i=1

mi

z2
= −dW

dz

W(z) = −3G
∑∞

i=1 mi

z
bounded for z → +∞.

(36)

Therefore, escape to infinity is possible.
In the case of equation (26) its relativistic counterpart is

z̈ = −2(1 − ż2)3/2G

∞∑
i=1

mi(z − zi)

[r2
i + (z − zi)2]3/2

(37)

and we can write

z̈ � −2G

∞∑
i=1

mi(z − zi)

[r2
i + (z − zi)2]3/2

(38)

and continue as in Case 3.2. Therefore, escape to infinity is possible.
These examples might lead one to conjecture that if the following limit exists and is not

zero

lim
ρ→+∞

x · F

x · MF
(39)

then relativistic escape is implied by the existence of the classical, non-relativistic one.

5. Final remarks

We have seen that escape to infinity can be discovered without solving the equations of motion
ẍ = −∇V and some examples, with attracting masses of finite total mass, admitting escape to
infinity have been given. To the best of the authors’ knowledge there remains the open problem
of finding a mass configuration (mi, xi) satisfying equation (18) not admitting escape; that is,
all the trajectories of a unit mass under the action of the masses should be bounded. Even a
two-dimensional example would be interesting.

Other open problems are these: is there escape when infinite masses lie outside a cylinder,
or if the infinite distribution of masses lies inside the three cylinders

x2 + y2 � 1 x2 + z2 � 1 y2 + z2 � 1 ? (40)

Note that the techniques of Case 3.1 do not apply in this last case since any plane cuts the
region defined by (40).

Finally, we give an example of a mass distribution with
∑

mi = +∞ for which escape is
possible.
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This distribution is given by

mi = 1 xi = (0, 0, −i2) (41)

and it satisfies equation (18).
The z-axis is an invariant line, and the motion along it is given by [9]

z̈ = −G

∞∑
i=1

1

(z + i2)2
= −dV (z)

dz

V (z) = −G

∞∑
i=1

1

z + i2
z > 0.

(42)

Note that V (z) is bounded since

∞∑
i=1

1

z + i2
�

∞∑
i=1

1

i2
= finite. (43)

Therefore, escape to infinity along the z-axis (z > 0) is ensured.
The case of an infinite number of attracting compact bodies has not been considered since

its treatment is similar to the case (considered in section 3) of a system of pointlike attracting
centres.
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